Search results for "D'Alembert's paradox"

showing 2 items of 2 documents

Adaptive control of a seven mode truncation of the Kolmogorov flow with drag

2009

Abstract We study a seven dimensional nonlinear dynamical system obtained by a truncation of the Navier–Stokes equations for a two dimensional incompressible fluid with the addition of a linear term modelling the drag friction. We show the bifurcation sequence leading from laminar steady states to chaotic solutions with increasing Reynolds number. Finally, we design an adaptive control which drives the state of the system to the equilibrium point representing the stationary solution.

D'Alembert's paradoxEquilibrium pointTruncationGeneral MathematicsApplied MathematicsMathematical analysisGeneral Physics and AstronomyReynolds numberAdaptive controlStatistical and Nonlinear PhysicsLaminar flowDrag equationFinite dimensional approximationPhysics::Fluid Dynamicssymbols.namesakeClassical mechanicsDragsymbolsBifurcationReynolds-averaged Navier–Stokes equationsMathematics
researchProduct

High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex

2013

Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investi…

D'Alembert's paradoxGeneral Computer SciencePrandtl numberMathematics::Analysis of PDEsFOS: Physical sciencesPhysics::Fluid Dynamicssymbols.namesakeMathematics - Analysis of PDEsHagen–Poiseuille flow from the Navier–Stokes equationsFOS: MathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical analysisGeneral EngineeringFluid Dynamics (physics.flu-dyn)Reynolds numberPhysics - Fluid DynamicsMathematical Physics (math-ph)Non-dimensionalization and scaling of the Navier–Stokes equationsBoundary layersymbolsTurbulent Prandtl numberReynolds-averaged Navier–Stokes equationsBoundary layer Unsteady separation Navier Stokes solutions Prandtl’s equation High Reynolds number flows.Analysis of PDEs (math.AP)
researchProduct